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I. INTRODUCTION

This decade has seen a marvelous return to quantum field theory among
theorists in high energy physics. The compelling beauty of non-Abelian gouge
theories, the striking empirical support for spontaneous symmetry breaking in weak
interaction theories, the deep connection between asymptotic freedom and the
approximate scaling in inelastic lepton scattering on hadrons, the entrancing
suggestion of quark confinement—all this and more has drawn our focus once again
on quantum field theories. We have learned to view field theory as providing us

with fundamentzl degrees of freedom rather than thinking that each new particle

of resonance as requiring a new field for its description. Indeed the idea that some
smail set of degrees of freedom (quarks and gluons] provides the basis for all
observed mesons and baryons seems to be a concrete r;sallzation of the ideas of
"nuclear democracy” advocates of the last decade. [ Increasing numbers of them
have been seen with path integrais and Lagrangians fately. ] It makes explicit the
concept that all hadrons are composites; not of each other, though through
unitarity all the hadrons can become the other hadrons within the restrictions of
conservation of charge, baryon number, isospin, etc. It is a deeper way: they are
all composites of quarks and gluons.

These lectures have no pretentions tc cover all possible topics in the
connection of field theory and hadron physics. Rather the goal is much more
modest: I hope o touch on a number of tantalizing questions which will serve to
some extent as an introduction for the student as well as the research person
curious for more than 3 peek. Several "old" topics will be treated-the
renormalization group and the infrared and ultraviolet litnits of field theory,
choosing Quantum Chromodynamics (QCD) from among all theories, various
thoughts on spontaneous mass generation. Some newer ones are discussed here
too-ideas on ceclor confinement, instantons and the vacuum state in QCD, and

related topics.
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As general background material | recommend the article on "Gauge Theories"

by E.S. Abers and B.W. Leec, Physics Reports 9C, 1 (1973); the lectures by 5.

Coleman at the 1975 Erice Summer School; the book by 1.C. Taylor, Gauge

Theories of Weak Interactions (Cambridge U. Press, 1976); and the review article

by R. Jackiw, Rev. Mod. Phys. 49, 681 (1977).

I1. THE RENORMALIZATION GROUP AND SOME CONSEQUENCES
Quantum field theories of relevance to particle physics all have divergences
when one calculates in perturbation theory about the free theory characterized by

propagators
. 2 2 .
{Spin Numerator}/{m” - p* - i) . ¢}

Such theories are not defined by the classical Lagrange density; one has to give a
prescription fof making the theory finite in every order of perturbation theory
before a calculational procedure of recognizable validity emerges. The generally
accepted manner for doing this is to define the theory by giving the value of a few
basic quantities (mass, coupling ¢onstant, ...} at some point in momentum space. So
one takes the original theory defined by the classical Lagrangian and rencrmalizes,
so the divergences are absorbed in scales of wave functions (or field operators) and
other physically harmless locations. Since there is an epormous arbitrariness in
how, precisely, one renormalizes, we can anticipate an invariance of physical
quantities on changing the point in momentum space where that renormalization is
done. The expression of that invariance is the renormalization group. The behavior
of classes of quantum field theories under this group allows one to select those with
controllable infrared or ultraviolet behavior and thus on the basis of the behavior of
experiments which probe long or short wavelength phenomena to choose acceptable

field theories.
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To illustrate this in action let's look at a scalar field in D dimensions of

space-time with Lagrangian density
2 N
L= 53 0G0 - b 0 : (2)

When A‘O is dimensionless, namely when N =2D/(D - 2), all the divergences of
quantities expanded in a perturbation series in Ay are logarithmic and the theory

can be renormalized, i.e. made {inite, by redefining the field
-%
x) = Z ¢0(x) (3
and coupling

AN

KA : ()

where the dimensionless (infinite) factors Z and Z, are constructed so alf Green
functions in the theory are finite. These renormalization facters are defined by
giving the value of certain Green functions at some point p2 =—u2, uz >0, in

maomenturn space. These Green functions are given by

(n) D, %
Gy Py e Pp A)S (j;lpj) =
n

L p.ex,
[dx,...dx e =17 x1<<:||T(¢> (x,)..2 ,(x ) ]0> *
1P o F oy :

To lowest order in A o™e have for G{Z) and G(N)
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P22 = iftp? +ie) , 6)
and

J
We define renormalized Green functions by
GV, ph ) = 272650y, e py A , ®

and require {this is the tenormalization)

2 16207, ! =1 = z—-%ic;om(pz,xo)“ . O
ap 2 2 ap 2.2
p=u p =4
and
{N) =i
G V(P yemePagr h u)' = (10}
PNt e D/Z (N-2)
p2=aif (2m)
- ZN/ZGO(N)(P-, 2. (a1
i" o
22
p=-u
These determine Z and then ZA once one has calculated GO(Z) and GO(N) 10

whatever accuraCy desired using perturbation theory in A, and some method of
cutting of the divergence integrations. After rescaling by Z and Z, via (3) and (%)
the cutoff is sent to infinity with ¢, A, and 1 held fixed. What is remarkable, then,

is that the resulting theory is then finite to all ordersin A.
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But what are we to make of y?7 We began with a Lagrangian with a field of
dimension (D-2)/2 and a dimensicnless coupling. Now we also seem to have a mass
scale yu. Since yuis arbitrary, the consequences of the theory should be independent

of it. We can insure that by noting that since Go(n)(pj,k O) never heard of u
2 (n)
ST (GO (pi, ;‘0)) =0 . (12)

The appearance of u will then be only apparent in this sense: only one real
physical parameter enters this problem, namely the coupling A. Sincel is delined
by a Green function evaluated at pj2 = —uz, X may be traded off for u. Physical
masses, for example, must be of the form

MPhysiCa! = uFQ) * (13)

but F()} must depend on X {p} in such a way that

3

au MPhysical =0 : (16)
From {12) and the definition of G(n) we learn
) ?
[ua—; »8(0 ﬁ'%Yui’G(n)(Pl’--- Prr Xy} = 0 , (15)
where
8 = u 2 (16)
3p , '
A 0 fixed
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y{A) = usa;llogz . (17}

b 0 fixed

()

This differential equation pravides restrictions on the form G"* can take, and, even

more important, knowing the functions 8(}) and y(}) in perturbation theory can

{n)

frequently give information on G not possible to see in perturbation theory.
We'll come to some examples of this.

Suppose the dimensions of c™ are @, then the solution of (15} is

cMiepn.8) = 6V, e log £, 1) x
0

x exp+ | (. %Y(-i(t))j dt (18)
-log g

where

A _ gy, MO = A

dt - 1] (19}

is the running coupling constant. It tells us that at a scale determined by g the

strength of the non-linearity in gmay vary. Clearly that is because we do not do
perturbation theory in X but really in the operator ¢ N which does depend on x.

As £ varies,the argument of A (- log £} moves about and approaches zeroes ot
the function g{ ). Clearly when 3 is near }; where 3(3,)=0, Mt) =0 and the
effective coupling in G(n) is not A, the renormalized coupling, but i . Suppose near

ol
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then

- Bl
Al-logg) = 3 «& lx-x))

{20

{(21)

If BI >0, then as £+ 0, .-\(-Jog £Y+ 2 T If 81< D, then as S*w,i(—log£)+ll.

Zeroes of B with positive slope govern the infrared behavior of the theory (gpi- }H

zeroes with negative slope, the ultraviolet behavior (g P sz

In QED in lowest order perturbation theory

b 3

BQED(e) = ‘*ie 1 b>0
so the effective charge is
- 2
(- log g) = -—'5—2--—
i-belogg

(22)

(23)

so perturbation theory for G(n}(pi, ;(—iog £}y u) is good for £+ O or really for

E << exp I,l'(be)2 with b order unity, and €2 1/137. The infraced properties of

QED are then calculable in perturbation theory; e.g. the electron or muon magnetic

moment. The short distance behavior is unknown and the formula for —ez(-logg)

clearly breaks down for ¢ large.

In a pure Yang-Mills theory with the Lagrange density

'S'VYM = -—lz-F g 3, a = gauge group index

4g Hv IR

(24
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a _ a a b, c
Fuu = auA v 3v&u *fabcAu A v ', (25)
the function &g) for small g is
alg) = —%33 +O(gs) , B >0 (26)
and
~ 2 2
gl-log £} =___-3—2-——— . (27)
1l +Bglog £

so the ultraviolet or short distance behavior of the theory is given by perturbation
theory in the small coupling g(—log £). When we add fermions to the theory the

total Lagrangian is
L= Ly + Wi 7 T -mg Iy , (28)

with T® a representation matrix for the representation of the gauge group in which
the fermions sit. 1f the gauge group is SU{3) and the fermions (quarks) are members
of the fundamental triplet representation then B in (20) is positive if the number of
such fermions (number of flavors) is <16. The phenomenon of B >0 and

predictable ultraviolet behavior is called asymptotic freedom.

Another consequence of the renormalization group follows from looking at
the renormalized propagator G(ZJ(pz, A, p) when there is no mass term in the

original Lagrangian. By dimensional reasoning

2
G(Z)(stl 1 |.|) = u-zF (25 ] :\) y (29)
u
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where F is dimensionless, Now the renormalization group says

2 - 2 2 0 -
F(Lz, 1) = F (I,A(-logp—f)) (p-i)exp+ I/ 2 zy(Xt))dt . (30)
W M P -log p*/
Define x{\) by
dlog (N _ _ i
dx B §Y} ’ G
then
x(log p/uN = B5 x(n (2}
u
and
s 2,2 p? |
R, Mg o0 = F (B3 x) (33
"
and
2 g -
G(Z)(pz, Au) = -—15.7(&2 x(k)) exp J 2 zdtT(l(t)) . (3y4)
P W -log p*/u
I G(Z) has a pole at p2 - M) away from p2 = 0, it must take the form

M2} = 2x (07! x constant
5 \ 4 . (35)

i

Suppose
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8(x) = 252 , (36)

NI

“then
M2 = plexp 1/b22 (37)

and we see that in a massless theory mass can be generated dynamically only

outside perturbation theory; indeed M( 702 is zero to every order of expansionin X.

IlI. SELECTING A FIELD THEORY
With the renormalization group as a tool we can begin the selection of a field
theory. { Of course, purists will wonder whether it's a sufficient tool. Thé
wondering should cease, however; the answer is no, but it's about all we have of a
non-perturbative nature in field theory.} Years of deep inelastic lepton
s;cattering1 (Figure !) indicates that for | q2 |21 (GeV/c)? the constituents {quarks
or partons) of a proton carrying charge or isospin or hypercharge or charm are

essentially point-like and free,

Boldly this is assumed to indicate the field theory of hadrons has asymptotic

freedom_ which necessitates a non-Abelian gauge theory plus fermions carrying
gauge charge plus ordinary Q, , Y, C, ... Which gauge theory shall we choose? The
answer is connected with hadron spectroscopy; that is, the character of bound
states of the hadron degrees of freedom. Following the spirit of the old Fermi-
Yang proposal that mesons are NN bound states one assumes that mesons are
quark-antiquark bound states with three (or more) kinds of quarks carrying isospin,
strangeness, charm, etc. for all the internal quantum numbers observed for mesons.

Baryons are then made out of qgq states. The properties of the well-established
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quarks are in Figure 2. More quarks will be called for by the discovery of states
like the upsilon, if, indeed, it is made out of qq as we now presume the mp , P, -
to be.

Some examples of the construction of observed states out of g's are as

follows:

11:+>: [ua> ‘K*>=lu-§> {¢>= fec >
(3%)
|p> = |uud > |1?>=|uds> j@7> = |sss > .

etc. The only flaw in this picture comes when one assumes the quarks in baryons
are in relative L = O states. This requires | qqq> to be symmetric. Since L = 0 is
very h‘kély tc be the ground state, we require another label in which to anti-
symme_trize the quark wave function. We want quarks to form tripiets under the
group of this additional degree of freedom, which is called 52!9_5.2 The natural

color groups are $U(2) and SU(3). In either case a baryon will be

IB) = leua.r qquqY> a,f,y =1, 2l3 . {39)

Since no quantum number associated with color has been cbserved, we presume that
baryons and mesons are singlets under color transformations. If we chaoose SU(2)

for the color group, then singlets can be made as |qa'cia>, Iquqsq as

£ >
Y afy
cesired, but also [qaq c:>, Iﬁuq queuﬁ*() and other unwanted states are singlets.
Sc choose SU(3). Then we can make ]qaqa> and Ieca,rqaq gd,> into singlets using
only two or three quarks. Of course iquau q358> is a singlet, but it comes up as a

problem (or virtue) for heavier bound states than {probably} yet observed.
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Now we muyst have a binding agent to hold the quarks together in the bound
states called hadrons. This glue must be free of the Q, Y, I, C,... flavor quantum
numbers listed above since it does not interact with the electromagnetic or weak
current coupled to leptons. It does carry about 50% of the proton momentum, but
not its quantum numbers. The choice made these days is to identify the glue with
the gauge bosons of an SU(3} non-Abelian gauge theory, A ua(x), a = 1,..8, and have
them interact with the color of quarks.

So we have the following quarks and gluons:

q af(x) a=1,2,3 Local SU(3) gauge symmetry
f=u,d,5,Cy.0n Global SU{N) flavor symmetry
Auc'(x) azl,..8 , Local SU(3) gauge boson flavor singlet,

For these fields we write the Lagrangian density

B
1 a a = . A (1] 8

- (Mo)ff Gud] qu lf! L] {A.O)

this defines the theory now popularly known as Quantum Chromodynamics (QCD}.
In it XB are the usual SU(3) 3 x 3 representation matrices. Mg is a matrix in flavor
space that contains mass splittings; so we can accommodate in this term the

henomenological fa H = < < i < < .
P nological fact that m, = m, <mg < m_ corresponding to m, < my ™y

The renormalization group function g{g) for this theory in lowest order is

3
Blg) =~ -3—-2 (33 - 2F) 1)
487



when the flavor index f = 1,...F.
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It is instructive to make a side by side list of comparisons between QCD and

the more familiar QED:

QED

Photon A u(x)

"Matter™ e, 4

¥ e(’d’ ¢'._l(x)

Spectrum of States:
Y, ¢, u-read from Lagrangian

Bound states:
positronium, H-atom

Interaction among bound states:
molecular forces, Van der Waals
force

Infrared free; "easy" IR properties

|
-/
_,LL__\ e
Photons have no charge

Charge is cbserved. Charge is not
confined

QCDh
‘a
Gluon Au (x}

ERRERRERER RS

"Matter" quarks
q, f(x) colors and flavors

AR HERARTELE

Spectrum of States: Hadrons

EXRAFREREERER

Bound statesm, K,¥ , p, 4,...

W REENEEEE R

Interaction among bound states:

scattering

HRBEEERERE R

hadron

Ultraviolet iree; "easy”™ UV properties

N_°

Gluons carry color charge

RERPERBEREER

SRS EERRRHEER

Charge (color) is not seen; no massless

bosans; no quarks. Confinement
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Unfortunately we are not going to provide the full solution of the theory

defined by '%co'

Let's discuss it a bit, anyway. First of all, in .g)are massless vector bosons which
yway

Indeed, the properties of the ground state are still under study.

carry color. That's bad, but not terrible since these bosons interact among
themselves via the cubiz and quartic terms in (Fuv)z’ so the real vector boson
could be massive, if it is even permitted as an asymptotic state. Second it has
quarks of unkriown mass carrying quantum numbers (color) probably never seen.
Third, it is asymptotically irce3; so its UV behavior is calculable and as far as one
can tell in detailed comparison with inelastic muon scattering data, compatible
with short distance behavior seen experimentally. Its infrared behavior is totally
unknown and not inferable from '?QCD by just looking at it. This is just the
opposite of QED where we read %ED like a book; namely, there are photons and
electrons and small, ®a), corrections, |

So what evidence do we have that %CD is connected with the world of real
hadrons? Certainly the charmonium spectroscopy of the states in the mass range
3 to A GeV/c2 strongly indicates that for heavy quarks, ¢ quarks, various
qualitative features of QCD are in operation. In deep inelastic lepton scattering, in
e*e” annjhilation, in the qualitative features of hadron spectroscopy-in all these
places we sense QCD at work.

A very nice set of calculations in this regard has been done over the past few
years by the ITEP, Moscow, group of Shifman, Vainstein, Voloshin, Zakharov,
Novikov and ()kun.‘i They study the physics of currents formed from massive
quarks. In particular the charmed quark. For example, they consider the current-

current matrix element of heavy quarks
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c _ 4 -igqex T PR o
D, (@ = [d'xe <0 jmu ()3 ;(0) lo> , 42)

3,60 = G A%, Qg fx) (43)

which is the cc contribution to the electromagnetic current,

In the q2 plane for this matrix element one has for large --q2 asymptotic
freedem where one may calculate Duvc' Near q2 = 0 not much is known., For
positive q2 there are known resonances: ¥, V"', ¢",... to which cc couple. See
Figure 3. In perturbation theory they are able to calculate graphs like the ones in
Figure 4. The ITEP group argues that the distances in this perturbation theory
which are essential in the calculation are x _-_t'-mc'l; 33 m. 1.5 GeV/cz, as
indicated by the § mass and the. charmed meson masses, then they argue further
that even at qz = 0, asymptotic freedom has set in for these heavy quark matrix
elements. They view the world as in Figure 5.

Now using dispersion relations in qz, they relafe the values of Duvc at q2 =0
they calculate from perturbation using %CD to q2 in the resonance region.
Given the masses of the resonances they calculate quite a few numbers of which
Tx = e'e7) = 5keV is representative.

To study even charge conjugation states they look at forward light by light
scariering via the electromagnetic coupling to charmed quarks. From these calcu-
lations using the ITEP Freedom assumption and dispersion relations again, they are
able to calculate a variety of quantities related to the C-even X states,

This approach seems very attractive to me. It maintains gauge invariance
and reiativistic co-variance at every stage. It is nécessary, of course, to use the
dispersion relations with care and good sense so one doesn't demand information

2 — : . .
about too many q°  derivatives of D € at q2 = 0, for then one js reconstructing
(TR

D, , © via a Taylor series,and somewhere that is bound to fail.
-
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In any case a significant number of phenomena about heavy quarks are
derivable in this fashion. A blind application to strange quarks works "OK," and to
light quarks doesn't do well at all. That is as it should be from the distance
arguments given before, but leaves a lot of work to be done on the QCD aspects of

light quarks.

IV. DYNAMICAL MASS GENERATION
The next, topic I'll take up is the intriguing question of generation of mass in
non-Abelian gauge theory by dynamical means. This is a situation where there
appears no mass scale in the Lagrangian density (so in ’%CD above, Mg = 0}, but
since a mass is introduced via the renormalization process, it is possible for the
renormalized theory to have mass. We saw how this might operate by the study of

the renormalization group in Section II; now we'll put a bit of flesh on these bones.

We really want to study QCD. So let's imagine MO = 0in "'%CD' It is then
oL a, g
-gQCD = - anguvaFuV + qlm ] (Q!‘)
with
el c
(Du)ab =3 4yt (T A . (45}
The symmetry in this is SU(B)COIor @G where
G = U(F)vector GU(F)Axial (46)

and F is the number of flavors. Associated with the global symmetry G are the

conserved currents
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F F
- - -
9’)‘ = 121 qiquf ' ‘-'v):= le 947y Ys9¢

(47)
F

F

A - 3 a _ - a

7o - i{ v, Ty g FT = ..; v, vsTep 9
£1,1=1 =1

with a= 1,...F2—l. The T¢ are F x F representation matrices of SU(F). These

currents, cxcept for ‘,’-Y;,' remain censerved under interaction. The axial current

has an "anomaly" coming from the short-distance structure of the thecry, and its
divergence is not zero, but

Ao/ o %F G a g

. [

3 )8 -4 uv o pv (8)

g

RWITFT _

New the symmetry of fhe hadron states is not as large as G. It is only

where i:u vg = he is the dual gauge field.

u {1) x SU(F} with Fz-l pseudoscalar mesons which are more or less certainly

Yector
mescless Geldstone bosons. Even the SU(F) flavor symmetry is approximate, and
the massless bosons pick up @ mass possibly from the weak interacticns.

To generate these Goldstons bosons we must break the chiral

fr .
“'TAxiai(F) QU

Because of the anomah it is possible (below we'll even see it's likely} that there is

oy £1
'\'cctor(Fn symimetry of the bare vacuum (a5 defined by ‘gQCD)'

ne massless Soson asscgizted with the U (1) symmetry, This is fine, actually,

Axial
since theie apprars 1o be no ruch massless (read small mass in practice) object.

We can gencrate 2 mass scale in a Lagrangian thecry by two presently
accepialle methods:  {lMet a scalar meson tield, $, coupled to quarks asg¢ qq

develon a vacuum expectaticn value -¢> £ 0. This is 2 "sponianeous symmetry

breaking™ and is essentially kirernatic in origin; that is, it is put in by hand, (22¥e
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can have composite fields like qq itself develop a non-zero vacuum expectation
value. This is dynamical and by the same renormalization group arguments used

befcre must take the form
- 3 8
<q(0iq0) > = v exp- [ dx/B{x) . (49)

How can we investigate this possibility in QCD? Let's look at the Ward

identity satistied by the proper quark-quark-axial vector current vertex I‘}\a
a - -
e = -y TSP @ STIET ) (50)

where 5(p) is the quark propagatoer and T%is a flavor matrix. Let's look at this as
q, * 0. The right hand side approaches {TjT ° S'l(p)}. If this anti-commutater is
non-zero, then I'Aa must have the property

q .
I‘kc(p, p+q = F“'éz(p, p)-% T Ys ' (51
q*0 q

where F_is a constant and .? is the wave function to find a qq pair in the
pseudoscalar state called pion (Figuré €). In every order of perturbaticn theery
S*l(p) is proportional te A{p“)§ which anti-commures with Y5 5C {\;5'{'3, S"l(p)} is

zero. To generate a pian pole at q2 = 0 we need 2 non-perturbative effent whoreby
slp) = ApD- BGED , (52)
then the ward identity tells us

6% = F_ . 1 : (53)
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So proving that a non-zero anomalous part to S'l(p) exists would be equivalent to
showing there is a massless pion. This is not more than a statement of Goldstone's
theorem, since B(pz) has dimensions of mass it introduces into the problem a scale
thus breaking the chiral symmetry, thus giving rise to a massless boson

To investigate the presence of B one looks at the Bethe-Salpeter equation for

.93 and concludes

B:[d"p?_zzazzk (54)
prAT(p ) - B (p7)

where K is the irreducible kernel for qq scattering in QCD. Now Lane5 has argued

that only in an asymptotically free theory can we investigate this equation in some

convincing way. Namely, we can look at the pz* = behavior of B and conclude

that the equatiorn may have a-solution. Now since S'1 is a gauge dependent cbject,

the conclusion still leaves one uneasy. Of course, the gauge dependence comes

from the fact that
sip) = J d*xe P X @ IT@xqON |0 >, (55)

and q{x}q(0) is gauge dependent except at x = G. Since pz + @ "takes" us to x = 0,
the conclusion stated may be OK.

So we see that this standard Nambu-Jona-Lasinio approach is tricky in gauge
theories, because gauge invariance (a crucial aspect of the theories) is treated
cavalierly. What we need, for example, is a compact way to calculate quantities
like < [q(0)q(0) 0> directly. { You can see from {55} that it is zero if B(pz) is
zero. } This is zero in every order of perturbation theory and evaluating it outside
of perturbation theory has proven more or less intractable without going [ull circle

to equations like (54) for B.
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We can, however, get a feeling for the issues by Jooking at a model introduced
. by Ansel‘m6 in 1959 and analyzed in 1961 by Vaks and Larkin7. It exists in one

space and one time dimension and has N fermions by by coupled via

& - izpegirz Gy ) (56)
with

N
@) - _{1 A ‘ (57)
I=

The generating functional for this theory is

Y1 L [ g G Ty W) 058)

which is equivalent tos

iw[7) AT AY-0/2-gd +Ty+TI ]

e = [ dydldo e , (59)
which can be seen directly by integrating over the auxiliary field 0. ¢ is rot a
dynamical variable, -S‘Tc- does not appear in 2 but simply plays the role of
separating the @tp)z in the interaction and éllowing us to deal with the more
tamiliar form for FLin 53 1t <o #0, then the fermion acquires a mass
Mg = g<0>; 50 0is "substituting” for .

To investigate whether <0 >£0, let's set o{x) = v + x(x) and study the energy

density of the resulting theory as v varies. f we make this substitution and

introduce a source 5 for the x,field we have

P 2 - -
. _ o GSe e -x T2 -x v -gib - gxby + S ]
VIS [ dpdydye X xXV-8 . (60)
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which becomes on integrating over ¢ and P
. 2 :
WISl = [ dyexpif [- & vx-itrlog! l--i-éigﬂx ]+sx] , (€N
{62)

Fa)

This .g’is non-local, non-Hermitean, and non-finite. It is non-local because it
contains all the processes in Figure 7 where the dashed line represents a x and the
solid fine a propagator {f- gv}'l. It is non-Hermitean because it contains particle
production. It is non-finite because the first two graphs in Figure 7 are infinite and
are the wave function and mass rencrmalization of the original theory, which, by
power counting, is just renormalizatle at D = 2.

After renormalization the vacuum, or ground state is defined by <x> =0 or

t:u::,u.:ivalen‘tlya ‘?;R

= 0. In O space-time dimensions this means

X=C
22w P?re-9 1 , 0.1
vits " [©-0f aytFVaxti-p)
(Zn)}"(2-D 0
- me] =S (63)
with the dimensioniess coupling
A= /RgwP2-! (e4)

defined in terms of the normalization point p, and

F() = gv/y . (€5)
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In D=2+ ¢ dimensions we can study (63) as S +~ 0. Requiring the vacuum to be

s
stable which means 32(-_%)/3)(2[)( g >0, we find
. (66)

At D = 2 exactly we can carry out the integral at 5= 0 to find

VI
1+ 42 log[ 1+ 4ECY ‘1] .2 , (67)

I+ 4F(A)¢ + ) A2

and discever F{)) behaves as shown in Figure 8. From the renormalization group

we know

dlog F(A) _ 1
iy =-®Em (&8)

so we deduce that B{1) behaves as in Figure 9. Near X = 0 8(A) behaves as

3 2
B = -2 42 R , (69)

50 the non-analytic structure in A}, coming from the non-anaiytic behavior of
F(A) (or Mg if you like), shows up in the non-perturbative requirement of vacuum
stability. The infrared stable behavior near /\2 = T is a direct result of the non-
analytic terms in (69) cr more precisely (68).

The hope in treating this unrealistic mede! in t:Ic»t.:il9 is to learn what must be
the ingredients for a study of the more complicated vacuum of ncn-Abelian gauge

theories. To date that has not been a realized hope.
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V. QUARK CONFINEMENT
We have talked at length in these lectures about quarks {with quantum
numbers given in Figure 2) and the gauge bosons which are supposed to glue them
together. To date no one has reported a convincing sighting of either a quark or a
gluon. Perhaps we will find them. Even more intriguing: perhaps we will never

. . . “
find them. This, taken at its face, means oCD does not represent the spectrum

of QCD but only the degrees of freedom: Aua(x) and 9g f(x). The idea that these

degrees of freedom can never be observed by themselves but only in the bound
state combinations of color singlets we call hadrons goes by the label of color or
quark confinement.

Clearly this question of observing color co-ordinates is an infrared or long
distance problem: only if we can separate quarks can we study them individually.
At short distances we may sense their existence by local probes of the weak

current. With reference 1o the infrared behavior of QCD let’s look at the effective

coupling

8ocp ® /D) = g/ bg’ log p?/ud) , b>0 . (70)
For 924 =, it goes to zero; that's just asymptotic freedom. As p2+ 0, g2 gErows
and in the approximation which leads to (70) blows up. 3o the long distance
behavior of QCD is a strong coupling problem. In contrast, QED has b <0 in (7a)
and the infrared behavior has EQE; + 0. This ties in nicely with the fact that the
spectrum of QED can be read directly from the Lagrangian.

in (70) there is the arbitrary renormalization scale y which tells us when ‘32 is
srmall (p2 » 2) or large (pz,;: uz). Presumably 1t' is when gz is order of unjty that

strong coupling and binding effects come into play. 5o we can tentatively identify
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- 2 .
8QCD is

small. Similarly when distances > 1/), we can expect strong forces to come into’

2

u = 1 GeV as the hadronic scale and expect that when p° > l(GeV)z,

play.

To investigate the forces between colors we develop now a picture originally
due to Ken \Vilson.lo Picture two color charges at a fixed time separated by a
distance R (Figure 10). As R grows, at some point the energy in the field between
the charges becomes of order my_ ... At that distance it becomes energetically
favorable to put that energy into the creation of two color charges which then
shield the color force between the original charges (Figure 11). Before this
creation of pairs from the "vacuum", we can ask about the forces between the
charges.

To do this in a relativistic iashion. we need a spacé-time picture. So imagine
that at t = 0 the pair is created and separates a distance R in a short time; then
moves along for a long time (=T) at distance R and finally annihilate (Figure 12).
What we have pictured here is a large charge loop of area = RT located in the

vacuum. Suppose we calculate the energy per unit volume of this loop

] pa 2,y 4
E LI e IA F00d

e—iE(R)T - <e N , 1)

where the average is taken over configurations of the gauge field Aua(x). For a

single charge moving along the path z ll( 1) the current is
dzH{z) .4 '
Jc‘,“wse(x) = [arg ET 6 x - z() , 72)
50

exp - iE(R)T = <expig [  dz AF(z(x))> . (73)
Loop "
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To evaluatc E(R}), the energy stored in the loop as a function of R, we must
evaluate the vacuum average of the loop integral. When that integral behaves as
exp iR 7T win a >0, we can say the binding energy is confinirg since it rises with
separation.  In QED, E{R})— finite number. In QCD it ic conjectured that
©

E(R)= R for large R; er;ui\'agntly the loop integral behaves as exp -H{Area of loop;.
Wilsun has studied this loup integral in QED on a lattice and concludes that for e:
large enouph, the loop integral behaves as the area.

Te adcress the question of confinernent it seeins we ought te look at the
vacuwn stracture of QCD to ke sure we have it in hand., Later we can come to the
question of evaluating the energy of a loep in the vacuum,

To loow at varuuz in quantin: theery we must {irst go back to classical

prysics.  Recall the elemecntary protlem of the harmoenic oscillater with

hamiltonian
2 2.2
_ P mw” X
H = im T2 - 74)

The classical ground state has x = 0. The quantum ground stete is characterized by

the wave functian
T ~ q-x {7 5)

which represents tuctuaiions alcut the classical ground state at ¥ = Q.
in QED our co-ordinate iz the value of Au(X} 3t every point in space-time,

The classical ground ctate hes F = 0 and the energy moinentum tensor suv = 0,

u

Indeed this allows utr to conciude that A = 2 is a fine clascica!l ground state. The

-

quantum mechaiugcal groond state s represented by 2 wave functicual "Ol A_uf:;.}}

sor=thing lixe
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Yol ALl = exp- J d*x Au(x)Au (x) . (7e)

In QCD we expect that in the classical ground state Fuva(x) = 0 again and
also © = 0. This does not mean, however, A 2. 0, and that's they key to the
Hv H
subtlety of the quantum vacuum in QCD. Let's go over to a matrix formulation of

the theory by introducing a set of matrices T® satisfying

AR S IER LN o 77)
with !GBY the structure functions of our gauge group. Now let
F g9 = -i %T"Fw“(x) , (78)
and
A = -i gﬂﬁuf{x) ' (79)
5¢
Fuv(x) =3 ukv(x) -3A IJ(X) LA, A . (80}
Ii¢ Fw(x) = C it implies
A = g0 F 50" = g 1) , (81)

and g{x) is in the gauge group. S5c Au(x) is a pure gauge fieid. The representation
ot Au(x) in terms of g{x)} may not be unique. We must ask how many different

mappings there are frem G, t) to the gauge group. Each such inequivalent mapping
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will give a different classical vacuum with Fuu(x) = 0. Mathematicians have been
kind enough to prove for us that for SUN), (N > 2), as the gauge group, there are an
infinite number of inequivalent mappings labeled by an integer q =0, %1, #2,..
Essentially this represents the number of times (and "direction") that the x, 1)
manifold is traced out on the SU(N) manifold.

A visualizable example is the mapping of the real line onto a circle. In the
language above we consider elements g{x) in 0(2) and ask how many times the
manifold of g(x), the circle, is covered as — ®< x <=, Use the usual stereographic
projection of the real line onto the unit circle (Figure 13) with 6 the angle of the
line joining the north pole to the real line. As x goes from ~=to += the angle §
runs from — /2 to +»n/2. Let § the angle on the 0(2) circle by 8= #n{28)} then we
cover the 2(2) manifold #n times as x gées over its manifold.

From this observation on the classical vacuua in QCD which is due to Belavin,
et aI.,“ we conclude there are an infinite number of inequivalent classical ground
states. Which one of the | g3 g=0, !, 2,... shall we choose for the quantum
theory?

Let's go back to an example to guide us. Consider the hamiltonian
2
H = p®+gll -cos ¥ . (82)

The classical theory has an infinite number of equilibrium states (ground states) at
x = £273, 9 =0, !, 2,... Which one shall we choose for the quantum ground state?
in good old quantum mechanics we don't have to think twice about this since these
classical ground states are connected by tunneling so a linear superposition

+@

| vacuum> = § a_|q> , (83)
gz~ q
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with |q> a state centered about x = 27q, is needed.

In field theory we must be a bit more careful. Consider the ¢¢ theory

2
L= w6 9 o2y ¢ (8w
so the potential is
2.2
Vie) = -8 20 (85)

and has two equal energy minima at

@mm = +pf2 . (86)

If the number of dimensions of space-time is greater than two, there is no tunneling
between these classical ground states and either one forms the lowest state, in the

sense,

D 2
-fd x(e(x}-¢ . 1]
Yo [ 41 uef i , (87)

on which the hilber: space of states may be built. We are to choose one or the
other of the classical vacuua, (36), and the physics should be rmuch the same.

So we want to inquire if there s tunneling between the infinity of classical
ground states in QCD. To look at this it is convenient to go over to imaginary
time, {the lectures of S.J. Chang at this seminar indicate how to do all this
directly in Minkowski space}, or Euclidian space. In quantum theory going under
the barrier is an operation that can be described as a motion in imaginary time for

a real co-ordinate since
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& . AESVRY - IV (88)
or
iy = TG (85)
We want to consider only solutions to the classical QCD equaticns, which are
D F V=0 (30)
wvhere
{51

= +A,
Duw auw [u‘b)

which have zero eu“. This solution can take us from one classical vacuum to

another. Now

1 a a a a
Suv— g[(FuA -Fuk WF +Flv J+ pev]

Av

with

50 euv = 0 requires

Take,s2yv, F =F ., This means
uv uv

' (92)

(33}

(9%)
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FIZ = FB‘}_ y F13 = -qu , and qu = an . (95)

Sﬁppose we introduce (Yang,12 Belavin and Zakhorov”)

y = {xl +ix2)//7 , Z = (x3-ix4)!f'? ' {5¢)

then the condition Fuv = va means

Fy, = 0———*Ay=M'13yM , detM = 1 (97)

and

Fy; + FZE =0 . {58)

This last equation may be written in terms of the hermitean matrix

YA D N Wi PR Pt IS (%)
j=y,z ! }

Under a gauge transformation M + Mg, g' =g'l, so H is gauge invariant. The

general self-duality conditicn reads
) a-](H“a.H) - 0 . {100}

The general soiution of this is not known. Particulai solutions are known for SU(2).

11

The {irst is due to Belavin, et al. = and reads
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X

2
_ -1
Au(x) 2] g (x)a ug(x) . (101}

with
glo) = (x, +13 - I}//x,‘z iz , (102)

an element of SU(2). This solution has q = 1 where we characterize sojutions by the

topological charge

R | 4 as o«
q = Bz—nf Id XFLIV FHV ’ (103)

and can connect classical ground states with label g to states with q tl. These
classical field configurations with non-trivial topological charge are called
instantons. ‘

In-SU(2) a set of solutions with q = N have been gfven by " Hooftw; Corrigan

and Fairtie!%; and Jackiw, Nohl, and Rebbi.!® They are

a a
Au (x) = - v avlog $x) (104)
where nu: can be read off from (101) and (102) when N = . #(x) satisties
3%6(x) = 0 (105)
and for q = N has the form
N+l 2
$la = ] A Sx-x) . (106)

j=1 .

The existence of these tunneling solutions give a classical path with real co-

. a . . . . .
ordinate A b and imaginary time which takes us from classical vacuum  |gq> to
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|g $WN> N =1, 2,.. The transition probability from |q >to |q + N> is finite and

approximately of order

exp -N(8 “2/82) s {107)

with g the QCD coupling constant.

This all means that the quantum mechanical ground state in QCD is a
superposition of classical vacuua

2> = ] ¢,/ n> ; {108}

N=-**®

whereas in QED | 0> =|0> We go from [n>to |n+ 1> by a gauge transformation

since in state | n >we have Fuv= 0 and
Au(n)(x) - gn'la ugn (109)

where the gauge transformation 8 takes us from |n> to |n+ !>, This gives rise to
a periodicity similar to that in crystals and Bloch's theorem tells us
@
(= T &> . (110)
f=- @

Some immediate physics may be extracted from this vacuum structure:

I. Perturbation theory ahout Aua = 0 is not strictly correct since there are
tunneling amplitudes of order exp —(g_z) to other field configurations. Presumably
one wants to perturb about |R>,

2. The so-called U, (1) problem is solved by this. We'll come to this.

3. It may be connected with quark confinement.

Let us look now at the UA(l) pra::obiae.-m.17 In massless QCD with F flavors the

symmetry of the theory is the gauge group and
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Gﬂavor = SU(F)AG SU(F)V ®Uv(l)®UA(l) . (aLn

The current associated with UA“) is
F _
Jyl(x) = 12.1 Y, ¥ 59 . {112)

The other currents are conserved to all orders in g, while the axlal current has an

anomaly so

2
cg {qu"Fw" , (113}

1]

3* ()

L

cg:"alxjL , (114)

a-~

where we note that Fuv Fuvq is a total divergence. Now it locks like

Qs = fd%%&, 1) (115)

is conserved because of the total divergence structure of Fu vu Fuuu’ but because

of the instanton fields with q # 0 there are matrix elements of @ ¥ of the form
812/ 2
<Ri(gq 3: > o " /8 (116)

which vanish in all orders of perturbation theory. Chiral symmmetry breaking which
leads to massless pions would, we usually expect, lead to a ninth Goldstone boson
with quantum numbers of 3-%. But since ..%{ is pot conserved really, the
problem is absent.

So we see that |il> is not chirally invariant. Indeed because of the anomaly

fSpQ;] = -ZFSI {117}
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and the real invariance of QCD is
U“’ector(l}® SUV(F)QSUA(F) . (118)

How Sy A(F) is broken to produce massless pions is still not agreed upon in detail.
We began our excursion into instantonelogy because we wanted to learn about

8 has given convincing

the QCD vacuum for confinement purposes. P‘c.}lyalo:ovl
arguments how instantons give rise to confinement in two space and one time
dimension, but in 3 space, one time a similar hope has not yet been realized.

Indeed the various approaches to confinement have tried to populate the
vacuum with various objects. Mandelsta.rn19 has considered filling the vacuum with
magnetic monopeles which will crowd electric field lines into "strings" (much in the
way Cooper pairs allow Abrikosov flux lines in type II superconductivity) which will
then bind color. So far these attacks have been very illuminating, but not yet
conclusive. No doubt at the next Topical Seminar held here in Tubingen we will
hear conclusive progress in this matter. 1 know the generous hospitality and

excellent organization of our hosts makes all of us plan on returning for that

seminar before the university here passes its second 500 years.
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